
AKS algorithm: a poly-time decider for primality

Yutong Li

University of Southern California

yli81711@usc.edu

April 30, 2022

Abstract

Prime numbers are integers only divisible by 1 and itself. Identifying primes ef-

ficiently has been a longstanding open question in complexity theory. The AKS test

paper presented a polynomial time algorithm for deciding prime numbers, marking a

milestone in the way towards understanding prime numbers [AKS04]. The authors came

up with a modified form of Fermat’s primality test with reduced runtime. They proved

that the performance of a limited number of that test is sufficient to decide whether a

integer is prime. With the fact that both the runtime of a single test and the number of

tests needed are on the order of polynomial, the total time complexity of the algorithm

is polynomial.

1 Introduction

Prime numbers have been a widely studied topic in mathematics. In addition to its theoret-

ical value, primes are useful in practical fields such as cryptography. Therefore, identifying

whether a given number is prime with efficiency becomes a fundamental problem, and re-

searchers have been working on it for centuries and keeping pushing the runtime limit of

such algorithms.

1.1 PRIMES

Let PRIMES denote the set of all primes. The intuitive approach to determine if a number

n is in PRIMES is brute-force: try dividing n by every positive integer smaller than it. We

can further reduce the range to integers ≤
√
n since a factor p ≥ n must be accompanied

by a factor q = n/p and q ≤ n.

1.2 Polynomial and pseudo-polynomial

Let’s analyze the runtime of the above algorithm. One might state that the solution is

polynomial, since the input is n and the algorithm takes O(
√
n) time. However, that’s

1

no the case; it only demonstrates the solution is pseudo-polynomial. When we talk about

runtime, it’s determined in terms of the size of the input or the number of bits needed

to represent the input rather than the numeric value of the input. Given the input size is

⌈log n⌉ and runtime is
√
n, the algorithm is actually exponential.

2 AKS algorithm

In a nutshell, the main part of AKS algorithm relies on the following mathematical fact.

Let a ∈ Z, n ∈ N , (a, n) = 1, n is a prime iff

(X + a)n = Xn + a (mod n) (1)

However, even though it’s guaranteed that numbers satisfying the equation would definitely

be prime, this test would still render exponential runtime complexity because the left-

hand side could potentially be a polynomial with n terms. So the authors of the AKS

test develop a clever approach that avoid speeding expensive runtime on evaluating all of

the n coefficients. By modulo the LHS by a polynomial of form Xr − 1 in which r is an

appropriately selected small integer, they effectively limit the degree of the LHS polynomial

(equivalently the number of coefficients we need to evaluate) to r.

(X + a)n = Xn + a (mod Xr − 1, n) (2)

Now the issue is, satisfying one equation for a particular a no longer implies primality.

Nevertheless, the authors show that with a properly chosen r, only a limited number of

a’s needs to be tested to determine the primality of n. And such r and a’s are polynomial

in terms of input size, i.e. (O log n). All of these work together to limit both the time

complexity of each test and the total number of tests that need to be performed, making

the total runtime polynomial.

Algorithm 1 AKS algorithm for primality test

1: Input: integer n > 1
2: if n = ab for a ∈ N and b > 1 then (1)
3: return COMPOSITE
4: Let r = the smallest integer s.t. or(n) > log2 n. (2)
5: if there exists a ≤ r, 1 < (a, n) < n then (3)
6: return COMPOSITE
7: if n ≤ r then (4)
8: return PRIME
9: for a = 1 to ⌊

√
ϕ(r) log n⌋ do (5)

10: if (X + a)n ̸= Xn + a (mod Xr − 1, n) then
11: return COMPOSITE
12: return PRIME (6)

2

3 Correctness of AKS test

The correctness proof in the AKS paper constitutes the hardcore number theory part of that

paper. Due to hardness of that part, this paper will mainly explore the runtime analysis part

while only briefly going over the overall structure and rationale of the correctness proof.

To prove the algorithm correctly identifies prime numbers, we need to show that it will

output PRIME if the input integer is prime, and its converse, the input is indeed prime if the

algorithm outputs PRIME. It’s straightforward to prove the first direction. If the input is

prime, step 1 and 3 can never return COMPOSITE. Step 5 also can’t return COMPOSITE

because the equation in step 5 holds true for every prime number. Therefore, the algorithm

must return PRIME in step 4 or 6.

But it’s hard to show its converse, and the AKS paper devotes most of space on proving

it. The general line of logic is as follows. We let p be a prime factor of n. Then we define G
to be the set of polynomials f ∈ Zp[X] (mod h(X)) satisfying

f(Xn) = f(X)n (mod Xr − 1, n) (3)

where h(X) is some irreducible factor of Xr − 1. If n is prime, G would simply be the set

of all polynomials in Zp[X] (mod h(X)). Since now n is acting like a prime by passing all

the tests in step 5, we know that all polynomials (X + a) for a = 1, 2, ..., ⌊
√
ϕ(r) log n⌋ are

in G, which implies G is large. On the other hand, we show that G can’t be too large [TS].

More specifically, we show that (1) |G| ≥ n
√
t, and (2) |G| ≤ n

√
t if n is not a power of p,

where t is some fixed value. This implies that n is a power of p, i.e. n = pk for some k ≥ 1.

But if k > 1, the first step of the algorithm should have returned COMPOSITE. Therefore,

k = 1 and n = p. Given that p is a prime factor of n, we can conclude that n is prime.

We also need Lemma 4.3 from the original paper for the next section: r is upper-bounded

by ⌈log5 n⌉.

4 Runtime analysis

We need some background knowledge that is not covered in class to better analyze the

algorithm.

4.1 Background knowledge

First and foremost, we need to clarify the meaning of a notation extensively used in the

AKS paper, O∼ (pronounced ”soft Oh”), which is defined as

O∼(t(n)) = O(t(n) · poly(log t(n)) (4)

3

To put this in simpler language, the extra tilde means ”nearly”. For example, O∼(n) =

O(n · poly(log n)) denotes nearly linearly upper-bounded. More precisely, compared with

the corresponding Big O expression, the adding of tilde allows for a leeway and ignores the

logarithmic factors, which ensures the overall runtime is still approximately the same as

t(n).

Besides, we need to know the runtimes for some basic operations to be able to analyze the

complexity of AKS algorithm. The original paper omits most of the proofs and extensively

uses results fromModern Computer Algebra [vzGG13]. All results needed to comprehend the

AKS algorithm are listed below and the full proofs are not included due to space constraints.

• Addition, multiplication, and division operations between two n bits numbers can be

performed in time O∼(n).

It’s quite surprising that the runtime for multiplication and division is nearly linear.

As most people anticipated, naive multiplication operation takes quadratic runtime:

O(n2). But it turns out later computer scientists and mathematicians developed some

algorithms with incredibly improved time complexity using techniques such as Fast

Fourier Transform. With Karatsuba’s algorithm, the runtime was reduced to O(nlog 3).

In 1971, Schönhage and Strassen came up with a nearly linear runtime, in the form

of O(n log n log logn), or O∼(n).

• Likewise, addition, multiplication, and division operations on two polynomials upper-

bounded by degree d with coefficients at most m bits in size can be done in time

O∼(d ·m) steps.

• Modulo between two polynomials of degrees upper-bounded by d with coefficients

at most m bits can be computed in O∼(d · m) since we can get the remainder as a

byproduct of computing their division.

• Modular multiplication between three polynomials of degrees upper-bounded by d

with coefficients at most m bits, i.e f(X)g(X) mod h(X), can be computed in O∼(d ·
m). This can be achieved by performing a polynomial multiplication followed by a

polynomial modulo.

• The gcd of two n bits numbers can be computed in O∼(n).

4.2 Step-by-step analysis

Equipped with everything we need, let’s analyze the runtime of the algorithm step by step.

The first step is actually the Exercise 9.44 question from Modern Computer Algebra.

Though the solution is not covered in the book, the basic idea is to try out all possible b’s

and for each of them check if n is the bth power of an integer. We can easily see that b is

upper-bounded by log n. According to Theorem 9.28 from the book, each single integer roots

4

computation takes O(M(log n)). The notation M(n) is defined in the book as the runtime

of a multiplication operation between two length n integers. What we need to know is

that when we talk about M(n), it’s algorithm specific. So for the classical multiplication,

M(n) = O(n2). But for some fast multiplication algorithms we mentioned above, M(n) can

be smaller. For instance, Schönhage and Strassen’s multiplication algorithm corresponds to

a M(n) value of O∼(n).

Given that the paper claims the total runtime of the first step is O∼(log3 n). we have

strong reason to suspect that the authors used the classical multiplication: O∼(log3 n) =

O(log n) · O(log2 n). If Schönhage and Strassen’s algorithm was used, the time complexity

would be improved to O(log n) ·O∼(log n) = O∼(log2 n).

Out of curiosity, after further research I found out a paper titled Detecting perfect powers

in essentially linear time that provides even more promising runtime [Ber98]. It proves

that there exists a perfect-power classification algorithm that used time O((log n)1+o(1)) =

O∼(log n).

In step 2, we find the smallest r such that or(n) > log2 n. By Lemma 4.3 from the

paper we know that only O(log5 n) different r’s need to be tried. Therefore we can find r

by trying out integers up to ⌈log5 n⌉ and testing if nk ̸= 1 (mod r) for every k ≤ log2 n.

For a particular r, this will involve at most O(log2 n) multiplications modulo r, each of

which takes O∼(log r), summing up to O∼(log2 n log r). Considering that there are at most

O(log5 n) r’s, the total time complexity of this step is O∼(log7 n).

The third step involves computing gcd. We need to compute gcd(a, n) for all positive

integers a ≤ r. Since each gcd computation takes O∼(log n), the total time of this step is

O∼(r log n) = O∼(log6 n).

Step 4 requires a simple integer comparison, which takes O(log n).

Step 5 is the main part of the AKS algorithm and has the dominating runtime. It

requires the verification of ⌊
√
ϕ(r) log n⌋ equations. We use fast exponentiation algorithm

to evaluate each equation. Fast exponentiation generally adopts the technique of repeated

squaring to reduce the number of required modulcar multiplication from linear in terms of

exponent to logarithmic.

For instance, suppose n = 17, a = 3. We go through step 2 and figure out r = 7.

Therefore, we want to test the following:

(X + 3)17 = X17 + 3 mod X7 − 1, 17

5

Now apply repeated squaring:

(X + 3)17 = (X + 3)(X + 3)16 mod X7 − 1, 17

= (X + 3)((X + 3)8)2 mod X7 − 1, 17

= (X + 3)(14X6 + 16X5 + 9X4 + 8X3 + 12X2 + 4X + 6)2 mod X7 − 1, 17

= (X + 3)(15X6 + 6X5 + 16X4 + 3X3 + 9X2 + 7X + 13) mod X7 − 1, 17

= X17 + 3 mod X7 − 1, 17

Since this part might not feel so natural, here we provide the general algorithm [Smi03].

Algorithm 2 Evaluation of an single equation in Step 5

1: Input: integer n, r, a
2: Output: all coefficients of the polynomial (X + a)n (mod Xr − 1, n)
3: f(X) = 1; g(X) = X + a; y = n
4: while y ̸= 0 do
5: if y is even then
6: g(X) = g(X)2 (mod Xr − 1, n);
7: y = y/2
8: else
9: f(X) = f(X)g(X) (mod Xr − 1, n);

10: y = y − 1

11: return f(X)

Therefore, the evaluation of one equation requires O(log n) modular multiplication. Ac-

cording to the prior subsection, such modular multiplication takes O∼(r · log n). To make

this clear, here r corresponds to the upper bound for degree and log n corresponds to max-

imum coefficient length. Given this, the evaluation of each equation takes O∼(r · log n ·
log n) = O∼(r · log2 n). Thus the time complexity of step 5 is O∼(r · log2 n ·

√
ϕ(r) log n) =

O∼(r3/2 log3 n), since ϕ(r) < r. Plugging in the upper bound for r, it becomes O∼(log21/2 n).

Summing up all five steps, the total time complexity for the AKS test is O∼(log21/2 n),

which is in P.

5 Summary of importance

The AKS algorithm is of great theoretical significance, even though it doesn’t offer a promis-

ing runtime in practice. Actually some randomized algorithms preceding it exhibit better

runtime on real computers, approximately on the order of O∼(log3 n) [Aar03]. Those al-

gorithms are randomized, meaning there is a very low probability of error, or there’s no

chance of mistake but the algorithm might take a very long time to run [Sti08]. AKS test

is the first deterministic, rigorous, polynomial-time primality testing method. It eliminates

6

the little probability of error that mathematicians had tried for many years to make it go

away.

6 Related readings

For those who are unfamiliar with primes and primality test, I recommend Aaronson’s

note The Prime Facts: From Euclid to AKS as the intro reading [Aar03]. It starts off with

introducing primes and its background knowledge, and then naturally proceeds to talking

about primality testing and its history, and finally provides a little scratch of the core idea

of the AKS test without mentioning too much difficult math.

For commonly asked questions and relevant information about AKS test, such as its

implementation, the definition of the class P and NP, prior primality testing algorithms,

etc., please look at Anton Stiglic’s The PRIMES is in P little FAQ [Sti08].

For more comprehensive discussion of the full proof, I recommend referring to Michiel

Smid’s thorough proof Primality testing in polynomial time [Smi03] and Amnon Ta-Shma’s

lecture note [TS].

References

[Aar03] Scott Aaronson. The Prime Facts: from Euclid to AKS. Mathematics of Com-

putation, 2003.

[AKS04] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Annals of Mathematics,

2004.

[Ber98] D. Berstein. Detecting perfect powers in essentially linear time. Mathematics of

Computation, 1998.

[Smi03] Michiel Smid. Primality testing in polynomial time. 2003.

[Sti08] Anton Stiglic. The PRIMES is in P little FAQ. 2008.

[TS] Amnon Ta-Shma. The AKS Algorithm 1 Primality Testing.

[vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cam-

bridge University Press, 2013.

7

